Chapter 4

Functions

It is theoretically possible to write any program using only loops, conditional
and assignment statements. In practice, it is difficult to write any program
much longer than a page using only these statements. We need a tool that
will allow us to assemble a large program from smaller pieces. That is the role
of functions in programming. Once you have mastered functions and the art
of programming with them you can write programs to implement almost any
algorithm you can think of.

87

88 CHAPTER 4. FUNCTIONS

4.1 Concepts

A function is a block of code that has a name attached to it. We execute this
code by calling the function. In Python we call a function by giving its name,
followed by open and closed parentheses. For example, if a function is named
foo, we call it with foo(). We may put values inside the parentheses; this is
the way inputs are given to the function. We call values put in the parentheses
arguments to the function. In the expression

bar(3, 5)

a function named bar is being called with arguments 3 and 5.

There are two kinds of functions: functions that return values and functions
that do not return values. These two kinds of functions are used in very different
ways. When a function returns a value, you can use a call to this function as
a placeholder for the value the function returns. For example, we might have
a function addOne that takes a numeric argument and returns that argument
plus 1. This means that addOne(5) returns the value 6. We might have a
line of a program x = addOne(5). The effect of this line is to set variable x
to 6. The call to function addOne produces a value and this call can be used
anywhere we can use that value. We could even use it as an argument for
another call to addOne: y = addOne(addOne(5)) sets variable y to 7. When
a function does not return a value we use a call to it as a statement by itself.
For example, we might have a function printCalendar that takes a month and
a year as arguments and prints a calendar for that month. We could call this
function as printCalendar (9, 2011) to print a calendar for September, 2011. We
would not say x = printCalendar (9, 2011) because this function does not return
a value.

When writing about functions it is customary to put parentheses after the
name of the function to emphasize the fact that this is a function. Unless there
is a reason to discuss the arguments, we often omit them from the name. In the
examples above, we might discuss the functions addOne() and printCalendar ().
We have already used a number of standard Python functions. input() is a
function that takes an optional string argument and returns a string typed by
the user. range() is a function that takes one, two, or three integer arguments
and returns a list of numbers. len() is a function that takes a sequence and
returns its length. We have seen a function print() that prints its argument
(and doesnt return anything). Note that in all of these examples we can use
the function without knowing how it is written. All that matters is what inputs
the function takes and what value, if any, it returns. One great advantage
of functions is that once they are written we can use them without thinking
about their details, only about their inputs and outputs. This is what allows
us to write long programs. Functions encapsulate a process so that we may
concentrate on what it does rather than how it works.

